Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Technological Applications ; : 287-302, 2022.
Article in English | Scopus | ID: covidwho-20240807

ABSTRACT

Horticultural crops, especially fruits and vegetables, are highly consumed as food and food products. These items are consumed either uncooked, partially cooked, or fully cooked, according to their nature and the cooking process. A large amount of waste is generated from fruit-and vegetable-based industries and household kitchens. According to the FAO, waste generated from fruits and vegetable processing is estimated by 25–30% of the total product. This waste is rich in active compounds and has high nutritional content. Utilization of this waste into beneficial by-products could represent an essential strategy for reducing significant dietary and economic loss as well as the negative environmental impacts. The most common wastes include pomace, peels, rind, and seeds are fabulously rich in valuable bioactive compounds such as carotenoids, enzymes, phenolics, essential oils, vitamins, and many other compounds. These bioactive compounds show their application in various industries, including food industries to develop edible films, health industries for probiotics, and other industries for valuable and natural products. The utilization of these low-cost waste for producing the high value-added product is a novel step in its sustainable utilization. Tangerine is commonly produced and consumed as fresh or processed worldwide. The Mediterranean area produces the best and high-quality tangerine in the world. It is a high vitamin C source and rich in nutrients and provides many medicinal and health benefits. According to the new information released by the FAO, considering the influences of the novel coronavirus (COVID-19), populations with extreme starvation in the world will perhaps increase. Consequently, countries should gain proficiencies and try to reduce trade-related costs, for example, by reducing food waste and losses. Therefore, the present chapter intends to summarize the different types of waste originating from Tangerine (Citrus reticula L.) and highlight their potential in developing edible films, probiotics, nanoparticles, carbon dots, microbial media, biochar, and biosorbents. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

2.
Molecules ; 28(11)2023 May 31.
Article in English | MEDLINE | ID: covidwho-20243613

ABSTRACT

Scutellaria barbata D. Don (SB, Chinese: Ban Zhi Lian), a well-known medicinal plant used in traditional Chinese medicine, is rich in flavonoids. It possesses antitumor, anti-inflammatory, and antiviral activities. In this study, we evaluated the inhibitory activities of SB extracts and its active components against HIV-1 protease (HIV-1 PR) and SARS-CoV2 viral cathepsin L protease (Cat L PR). UPLC/HRMS was used to identify and quantify the major active flavonoids in different SB extracts, and fluorescence resonance energy transfer (FRET) assays were used to determine HIV-1 PR and Cat L PR inhibitions and identify structure-activity relationships. Molecular docking was also performed, to explore the diversification in bonding patterns of the active flavonoids upon binding to the two PRs. Three SB extracts (SBW, SB30, and SB60) and nine flavonoids inhibited HIV-1 PR with an IC50 range from 0.006 to 0.83 mg/mL. Six of the flavonoids showed 10~37.6% inhibition of Cat L PR at a concentration of 0.1 mg/mL. The results showed that the introduction of the 4'-hydroxyl and 6-hydroxyl/methoxy groups was essential in the 5,6,7-trihydroxyl and 5,7,4'-trihydroxyl flavones, respectively, to enhance their dual anti-PR activities. Hence, the 5,6,7,4'-tetrahydroxyl flavone scutellarein (HIV-1 PR, IC50 = 0.068 mg/mL; Cat L PR, IC50 = 0.43 mg/mL) may serve as a lead compound to develop more effective dual protease inhibitors. The 5,7,3',4'-tetrahydroxyl flavone luteolin also showed a potent and selective inhibition of HIV-1 PR (IC50 = 0.039 mg/mL).


Subject(s)
COVID-19 , HIV-1 , Scutellaria , Plant Extracts/chemistry , Flavonoids/pharmacology , Peptide Hydrolases , Scutellaria/chemistry , Cathepsin L , Molecular Docking Simulation , RNA, Viral , SARS-CoV-2 , Endopeptidases , Structure-Activity Relationship
3.
South of Russia-Ecology Development ; 18(1):62-81, 2023.
Article in English | Web of Science | ID: covidwho-20231040

ABSTRACT

Aim. In vitro analysis of the inhibitory activity of extracts, fractions and secondary metabolites of plants of the genus Silene (Caryophylaceae) and Serratula cupuliformis (Asteraceae) on the replication of SARS-CoV-2.Material and Methods. Silene spp. and Serratula cupuliformis of the Siberian Botanical Garden of National Research Tomsk State University were used. Ethanol extracts and butanol fractions of Silene spp. were prepared. The flavonoid shaftoside and the ecdysteroid 20hydroxyecdysone from Lychnis chalcedonica were isolated. Analysis of BAS was carried out by the HPLC method. In vitro analysis of the inhibitory activity of extracts on SARS-CoV-2 replication was performed in Vero cell culture by direct inactivation (neutralization) of virions. Comparison samples were dry ethanol extracts of chaga (Inonotus obliquus, Basidiomycota), spices of cloves (Syzygium aromaticum, Myrtaceae) and root of licorice (Glycyrrhiza glabra L., Fabaceae).Results. The inhibitory activity of ethanol extracts and butanol fractions of Silene spp., as well as individual compounds (shaftozide and 20-E) was revealed in the range of 50% effective concentrations (EC50) when dissolved in water from 339.85 +/- 83.92 mu g/ml to 1.59 +/- 0.39 mu g/ml and when dissolved in DMSO from 119.34 +/- 26.34 mu g/ml to 2.22 +/- 0.57 mu g/ml, respectively. The butanol fraction of Serratula cupuliformis was active with EC50=21.74 +/- 4.80 and 27.42 +/- 6.05 mu g/mL. These results for some samples of Silene spp. and Serratula cupuliformis are comparable to the EC50 values of the comparators.Conclusion. The results obtained suggest the presence of biologically active substances in the herbal preparations studied that act destructively on virions of SARS-CoV-2 and affect one of the main stages of its "life" cycle - on the attachment to receptors of sensitive cells.

4.
Journal of the Cameroon Academy of Sciences ; 18(Suppl):520-529, 2022.
Article in French | CAB Abstracts | ID: covidwho-2322929

ABSTRACT

The proteins (37%), carbohydrates (24.4%) and lipids (30.1%) contents of S. platensis from Nomayos provide the body with its structural and energy needs for about 518.8 Kcal per 100g of spirulina. Polyphenols (56.4 mEq. QE / g ES.), flavanols (13.2 mEq. QE / g ES.) flavonoids (21.2 mEq. QE / g ES.), carotenoids (3, 8%) and phycocyanin (16.15%) is responsible of its antioxidant capacities (7.5 + 0.33 mg eq. Vit C/g ES) and for a significant decrease in malondialdehyde MDA (< 0.001) concentration. Zinc (25 mG/Kg), Iron (256 mG/Kg), Selenium (1.24 mG/Kg), Manganese (23mG/Kg) and Copper (28.95 mG/Kg) reinforce this antioxidant power because they are cofactors of enzymes (Superoxide dismutase, Peroxidase, Catalase) which ensure the fight against free radicals. The presence of phycocyanin is an asset for the anti-inflammatory action. The significant decrease in IL-8 (p < 0.001) and TNF alpha (p < 0.04) levels confirms this property. On the other hand, the nonsignificant increase in Il-6 (1.56 to 2.18 pg/m;p > 0.05) would be partly responsible for the rise in CD4 levels (p < 0.001) and the reduction in viral load in immune deficiency patients (p = 0.000) supplemented with spirulina. In conclusion, S. platensis from Nomayos by its antioxidant, anti-inflammatory and immuno-stimulatory properties would be a good supplement food for subjects at risk of developing severe forms of COVID-19.

5.
SpringerBriefs in Applied Sciences and Technology ; : 51-59, 2023.
Article in English | Scopus | ID: covidwho-2325043

ABSTRACT

The main protease (Mpro) of SARS-CoV-2, a cysteine protease that plays a key role in generating the active proteins essential for coronavirus replication, is a validated drug target for treating COVID-19. The structure of Mpro has been elucidated by macromolecular crystallography, but owing to its conformational flexibility, finding effective inhibitory ligands was challenging. Screening libraries of ligands as part of EXaSCale smArt pLatform Against paThogEns (ExScalate4CoV) yielded several potential drug molecules that inhibit SARS-CoV-2 replication in vitro. We solved the crystal structures of Mpro in complex with repurposed drugs like myricetin, a natural flavonoid, and MG-132, a synthetic peptide aldehyde. We found that both inhibitors covalently bind the catalytic cysteine. Notably, myricetin has an unexpected binding mode, showing an inverted orientation with respect to that of the flavonoid baicalein. Moreover, the crystallographic model validates the docking pose suggested by molecular dynamics experiments. The mechanism of MG-132 activity against SARS-CoV-2 Mpro was elucidated by comparison of apo and inhibitor-bound crystals, showing that regardless of the redox state of the environment and the crystalline symmetry, this inhibitor binds covalently to Cys145 with a well-preserved binding pose that extends along the whole substrate binding site. MG-132 also fits well into the catalytic pocket of human cathepsin L, as shown by computational docking, suggesting that it might represent a good start to developing dual-targeting drugs against COVID-19. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

6.
Daru ; 31(1): 51-68, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2326703

ABSTRACT

OBJECTIVES: This scoping review aims to present flavonoid compounds' promising effects and possible mechanisms of action on potential therapeutic targets in the SARS-CoV-2 infection process. METHODS: A search of electronic databases such as PubMed and Scopus was carried out to evaluate the performance of substances from the flavonoid class at different stages of SARS-CoV-2 infection. RESULTS: The search strategy yielded 382 articles after the exclusion of duplicates. During the screening process, 265 records were deemed as irrelevant. At the end of the full-text appraisal, 37 studies were considered eligible for data extraction and qualitative synthesis. All the studies used virtual molecular docking models to verify the affinity of compounds from the flavonoid class with crucial proteins in the replication cycle of the SARS-CoV-2 virus (Spike protein, PLpro, 3CLpro/ MPro, RdRP, and inhibition of the host's ACE II receptor). The flavonoids with more targets and lowest binding energies were: orientin, quercetin, epigallocatechin, narcissoside, silymarin, neohesperidin, delphinidin-3,5-diglucoside, and delphinidin-3-sambubioside-5-glucoside. CONCLUSION: These studies allow us to provide a basis for in vitro and in vivo assays to assist in developing drugs for the treatment and prevention of COVID-19.


Subject(s)
COVID-19 , Humans , Molecular Docking Simulation , SARS-CoV-2 , Flavonoids/pharmacology , Flavonoids/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
7.
Journal of Chemistry ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2320526

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a well-established drug target for rational drug design of COVID-19 inhibitors. To address the serious challenge of COVID-19, we have performed biochemical inhibition screens with recombinantly expressed SARS-CoV-2 main protease (Mpro). A fluorescent assay was used to identify the flavonoid isoquercitrin as an Mpro inhibitor. Both isoquercitrin encapsulated in γ-cyclodextrin (inclusion complex formulations) and alone inhibited SARS-CoV-2 Mpro. For isoquercitrin, a Ki value of 32 μM (IC50 = 63 μM) was obtained. Isoquercitrin γ-cyclodextrin inclusion complex formulations additionally inhibited Zika virus NS2B-NS3pro leading to an IC50 value of 98 μM. Formulations containing the other flavonoid compounds diosmetin-7-O-glucoside, hesperetin-7-O-glucoside, and naringenin-7-O-glucoside did not inhibit SARS-CoV-2 Mpro. Steady-state kinetics indicate that the inhibition mechanism of Mpro by isoquercitrin is potentially competitive. Molecular modeling studies carried out with MM/PBSA confirm the likely modes of isoquercitrin binding to both proteases. These modeling results can be used in the development of structural analogs of isoquercitrin with better inhibitory profiles and potential candidates for anti-coronavirus drugs. Since the targeted proteases are essential for viral activity, the delivery isoquercitrin-cyclodextrin inclusion complex formulations could be of great interest for the development of future antiviral drugs to target intracellular virus proteins or other components.

8.
Avicenna Journal of Phytomedicine ; 13(3):265-279, 2023.
Article in English | CAB Abstracts | ID: covidwho-2319807

ABSTRACT

Objective: Severe disease onset of COVID-19 may result in alveolar injury and respiratory failure. Apoptosis and inflammation are the main causes of respiratory distress syndrome. Berberine is used in medicine as an analgesic, anti-asthmatic, anti-inflammatory, and antiviral. In the current investigation, the effect of berberine on COVID-19 outpatients was studied. Materials and Methods: The present clinical trial was performed on 40 outpatients who were randomly assigned to berberine (300 mg, TID, 2 weeks) (n=19) or placebo groups (n=21). Both groups received standard therapy and they were monitored on days 3, 7, and 14 after the beginning of the therapy for clinical symptoms' improvement, quantitative CRP, lymphopenia, CBC, and SpO2. The severity and frequency of these symptoms and the level of the parameters were statistically compared between the two groups. Results: On days 0, 3, 7, and 14, there was no significant difference between the berberine and placebo groups in the improvement of clinical symptoms (cough, shortness of breath, nausea, loss of smell and taste, diarrhea, dizziness, sore throat, stomachache, body aches, and body temperature), quantitative CRP, lymphopenia, WBC, neutrophils, platelets, or SpO2. Conclusion: Berberine (300 mg, TID, two weeks) is ineffective in treating COVID-19. More research with a larger sample size is needed to investigate different berberine dosages in other pharmaceutical formulations.

9.
Applied Sciences ; 13(9):5617, 2023.
Article in English | ProQuest Central | ID: covidwho-2316441

ABSTRACT

Based on the advances made by artificial intelligence (AI) technologies in drug discovery, including target identification, hit molecule identification, and lead optimization, this study investigated natural compounds that could act as transient receptor potential vanilloid 1 (TRPV1) channel protein antagonists. Using a molecular transformer drug–target interaction (MT-DTI) model, troxerutin was predicted to be a TRPV1 antagonist at IC50 582.73 nM. In a TRPV1-overexpressing HEK293T cell line, we found that troxerutin antagonized the calcium influx induced by the TRPV1 agonist capsaicin in vitro. A structural modeling and docking experiment of troxerutin and human TRPV1 confirmed that troxerutin could be a TRPV1 antagonist. A small-scale clinical trial consisting of 29 participants was performed to examine the efficacy of troxerutin in humans. Compared to a vehicle lotion, both 1% and 10% w/v troxerutin lotions reduced skin irritation, as measured by skin redness induced by capsaicin, suggesting that troxerutin could ameliorate skin sensitivity in clinical practice. We concluded that troxerutin is a potential TRPV1 antagonist based on the deep learning MT-DTI model prediction. The present study provides a useful reference for target-based drug discovery using AI technology and may provide useful information for the integrated research field of AI technology and biology.

10.
Applied Sciences ; 13(9):5300, 2023.
Article in English | ProQuest Central | ID: covidwho-2313532

ABSTRACT

The moisture levels in sausages that were stored for 16 days and added with different concentrations of orange extracts to a modification solution were assessed using response surface methodology (RSM). Among the 32 treatment matrixes, treatment 10 presented a higher moisture content than that of treatment 19. Spectral pre-treatments were employed to enhance the model's robustness. The raw and pre-processed spectral data, as well as moisture content, were fitted to a regression model. The RSM outcomes showed that the interactive effects of [soy lecithin concentration] × [soy oil concentration] and [soy oil concentration] × [orange extract addition] on moisture were significant (p < 0.05), resulting in an R2 value of 78.28% derived from a second-order polynomial model. Hesperidin was identified as the primary component of the orange extracts using high-performance liquid chromatography (HPLC). The PLSR model developed from reflectance data after normalization and 1st derivation pre-treatment showed a higher coefficient of determination in the calibration set (0.7157) than the untreated data (0.2602). Furthermore, the selection of nine key wavelengths (405, 445, 425, 455, 585, 630, 1000, 1075, and 1095 nm) could render the model simpler and allow for easy industrial applications.

11.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2313124

ABSTRACT

In the present study, we investigated the antiviral activities of 17 flavonoids as natural products. These derivatives were evaluated for their in vitro antiviral activities against HIV and SARS-CoV-2. Their antiviral activity was evaluated for the first time based on POM (Petra/Osiris/Molispiration) theory and docking analysis. POM calculation was used to analyze the atomic charge and geometric characteristics. The side effects, drug similarities, and drug scores were also assumed for the stable structure of each compound. These results correlated with the experimental values. The bioinformatics POM analyses of the relative antiviral activities of these derivatives are reported for the first time.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Angiotensin-Converting Enzyme 2 , Pharmacophore , Flavonoids/pharmacology , SARS-CoV-2 , Computers , Molecular Docking Simulation
12.
Talanta ; 263: 124678, 2023 Oct 01.
Article in English | MEDLINE | ID: covidwho-2320337

ABSTRACT

As a common antioxidant and nutritional fortifier in food chemistry, rutin has positive therapeutic effects against novel coronaviruses. Here, Ce-doped poly(3,4-ethylenedioxythiophene) (Ce-PEDOT) nanocomposites derived through cerium-based metal-organic framework (Ce-MOF) as a sacrificial template have been synthesized and successfully applied to electrochemical sensors. Due to the outstanding electrical conductivity of PEDOT and the high catalytic activity of Ce, the nanocomposites were used for the detection of rutin. The Ce-PEDOT/GCE sensor detects rutin over a linear range of 0.02-9 µM with the limit of detection of 14.7 nM (S/N = 3). Satisfactory results were obtained in the determination of rutin in natural food samples (buckwheat tea and orange). Moreover, the redox mechanism and electrochemical reaction sites of rutin were investigated by the CV curves of scan rate and density functional theory. This work is the first to demonstrate the combined PEDOT and Ce-MOF-derived materials as an electrochemical sensor to detect rutin, thus opening a new window for the application of the material in detection.


Subject(s)
Cerium , Metal-Organic Frameworks , Rutin , Polymers , Electrochemical Techniques/methods
13.
Mini Rev Med Chem ; 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2318819

ABSTRACT

Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper lead-optimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.

14.
J Biomol Struct Dyn ; : 1-20, 2022 Mar 09.
Article in English | MEDLINE | ID: covidwho-2317279

ABSTRACT

Coronavirus disease 19 (COVID19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, several countries are at risk of the pandemic caused by this virus. In the absence of any vaccine or virus-specific antiviral treatments, the need is to fast track search for potential drug candidates to combat the virus. Though there are known drugs that are being repurposed to fight against the SARS-CoV-2, there is a requirement for the virus-specific drugs at the earliest. One of the main drug targets of SARS-CoV-2 is an essential non-structural protein, 3CL protease, critical for the life cycle of the virus. We have used molecular docking studies to screen a chemically diverse set of small molecules to identify potential drug candidates to target this protein. Of the 22,630 molecules from varied small molecule libraries, based on the binding affinities and physicochemical properties, we finalized 30 molecules to be potential drug candidates. Eight of these molecules bind in a manner allowing for the scope of a nearly orthogonal backside nucleophilic attack on their suitably placed electrophilic carbonyl groups by the thiol group of cysteine residue 145, while remaining inside a 4 Ǻ distance range. It is interesting since carbonyl groups are known to be attacked in a similar fashion by external nucleophiles and can be relevant when considering these molecules as potential mechanism-based irreversible inhibitors of the 3CLPro. Further, ADMET analysis and Molecular dynamics simulations and available bioactive assays led to the identification of three molecules with high potential to be explored as drug candidates/lead molecules to target 3CLPro of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

15.
Natural Product Communications ; 18(4), 2023.
Article in English | Web of Science | ID: covidwho-2307135

ABSTRACT

Myricetin (3,5,7,3 ',4 ',5 ' -hexahydroxyflavone), a common dietary flavonoid, has been reported for its roles in improving health due to various pharmacological activities, such as antioxidant, antimicrobial, anti-inflammatory, analgesic, antitumor, hepatoprotective, and antidiabetic. Myricetin has also been shown to have a broad spectrum of antiviral effects against a variety of viruses including Rauscher murine leukemia virus (RLV), human immunodeficiency virus (HIV), Coxsackie virus, Ebolavirus, Zika virus, herpes simplex virus (HSV-1 and HSV-2), dengue virus, murine norovirus, infectious bronchitis virus, African swine fever virus, and both DNA polymerase alpha and DNA polymerase I. Intensive research suggests that the remarkable potential of myricetin in promoting either the prevention or overcoming of SARS-CoV-2 infection is due to the wide range of its effects on SARS-COV-2 proteases, including modulation of inflammatory processes and immune responses. In silico and in vitro studies demonstrated that myricetin can effectively interfere at various stages of viral infection, including the coronavirus entry and replication cycle due to its high-binding affinity with S-protein, ACE2 receptor, PLpro, Mpro, RdRp, exonuclease, and endoribonuclease. Based on the findings discussed in this review, myricetin, its glycosides, and dihydromyricetin, can be considered as multi-targeted agents having beneficial effects in combatting COVID-19.

16.
Letters in Applied NanoBioScience ; 12(4), 2023.
Article in English | Scopus | ID: covidwho-2291428

ABSTRACT

One of the biggest healthcare threats of this century is COVID – 19, undoubtedly. It has caused millions of deaths and raised alerts in the healthcare domain. This study focuses on the importance of 10 native Indian plant species and the phytochemicals obtained from them as a potential inhibitor to the Main protease enzyme of SARS CoV-2. About 26 phytochemicals were shortlisted for the same from the selected plants. Molecular docking was used to analyze the binding affinity of the phytochemicals in the active pocket of the Main protease enzyme to assess their effectiveness. The docking scores resulted in the selection of four compounds being more favorable than the native inhibitor N3, namely Quercetin, Withaferin A, Sominone, and Nimbin, with their binding energies being-8.42,-9.21,-9.95,-8.88 kcal/mol respectively. Furthermore, these four were further analyzed for their bioavailability scores. The studies showed that Sominone, Withaferin A are more potent inhibitors to Mpro of the SARS CoV-2 in all four. Thus further in Vitro studies can be done accordingly for the same. © 2022 by the authors.

17.
Journal of Nephropharmacology ; 10(2) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2304828

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by a novel coronavirus, started in livestock within the markets of Wuhan, China and was consequently spread around the world. The virus has been rapidly spread worldwide due to the outbreak. COVID-19 is the third serious coronavirus outbreak in less than 20 years after Severe Acute Respiratory Syndrome (SARS) in 2003 and Middle East Respiratory Syndrome (MERS) in 2012. The novel virus has a nucleotide identity closer to that of the SARS coronavirus than that of the MERS coronavirus. Since there is still no vaccine, the main ways to improve personal immunity against this disease are prophylactic care and self-resistance including an increased personal hygiene, a healthy lifestyle, an adequate nutritional intake, a sufficient rest, and wearing medical masks and increasing time spent in well ventilated areas. There is a need for novel antivirals that are highly efficient and economical for the management and control of viral infections when vaccines and standard therapies are absent. Herbal medicines and purified natural products have the potential to offer some measure of resistance as the development of novel antiviral drugs continues. In this review, we evaluated 41 articles related to herbal products which seemed to be effective in the prevention or treatment of COVID-19.Copyright © 2021 The Author(s).

18.
Cosmetics ; 10(2):43, 2023.
Article in English | ProQuest Central | ID: covidwho-2302826

ABSTRACT

Dendrobium sulcatum Lindl or "Ueang Jampa-Nan” (Orchidaceae family) is widely dis-tributed in Thailand and Laos. It is classified in the genus Dendrobium, which is used in both traditional Chinese medicine and Ayurvedic medicine for health enhancement and anti-aging. The purpose of this study was to investigate the phytochemical constituents and bioefficacy of stems, leaves and flowers from D. sulcatum for cosmetic and cosmeceutical applications. Phenolic and flavonoid contents were tested for the phytochemical evaluation. The antioxidant (DPPH, FRAP and ABTS assays), anti-lipid peroxidation, antiglycation, anti-inflammatory and anti-tyrosinase properties were assessed for their bioefficacy. The results showed that the extracts of stem and leaf had higher total phenolic content than that of the flower, and the leaf extract had the highest flavonoid content. The antioxidant, anti-lipid peroxidation and anti-inflammatory activities of the extracts were greater in those from the stem and leaf compared with that of the flower. The leaf extract exhibited the greatest antiglycation property. The results of anti-tyrosinase analysis of the extracts showed that the leaf and flower exhibited potent activities with a percentage inhibition greater than 70% (at a concentration of 50 µg/mL). In conclusion, these findings suggest that the ethanolic extracts from different parts of D. sulcatum are promising sources of natural active ingredients for further cosmetic and cosmeceutical products.

19.
International Journal of Current Pharmaceutical Review and Research ; 14(4):1-6, 2022.
Article in English | EMBASE | ID: covidwho-2297372

ABSTRACT

Nanotechnology is a new and rapidly evolving subject in the pharmacological and therapeutic professions. Nanoparticles have many advantages as medication delivery systems, including increased efficacy and fewer adverse drug reactions. This study investigated the roles of nanomedicine and drug delivery systems in the pharmaceutical industry, as well as the advantages and disadvantages of nanotechnology. The study used a qualitative research technique, with online survey questionnaires sent to medical professionals and experts in the field of nanomedicine. These surveys comprised open-ended questions that enabled respondents to record their responses in whatever way they deemed fit. The ten respondents were from a variety of medical and health institutes, as well as medical consulting firms. In terms of results, the research established that nanomedicine had been used in medical care for therapy and diagnostic purposes. They are being explored in clinical trials for several reasons. Nanoparticles are used to treat renal disease, Tuberculosis, skin problems, Alzheimer's disease, and various types of cancer and to create COVID-19 vaccines. Further information about the study findings may be found in the results and discussion chapter.Copyright © 2022 Dr. Yashwant Research Labs Pvt. Ltd.. All rights reserved.

20.
J Taiwan Inst Chem Eng ; 145: 104838, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2298875

ABSTRACT

Background: Traditional herbal medicines usually contain electron shuttle (ES)-like structures compounds which are potential candidates for antiviral compounds selection. Houttuynia cordata is applied as a biomaterial to decipher its potential applications in bioenergy extraction in microbial fuel cells (MFCs) and anti-COVID-19 via molecular docking evaluation. Methods: H. cordata leaves extracts by water and 60% ethanol solvent were analyzed for total polyphenols, antioxidant activity, cyclic voltammetry (CV), and MFCs. The bioactive compounds of H. cordata leaves extracts were assayed via LC/MS analysis. Identification of the marker substances for potential antiviral activity using a molecular docking model was provided. Significant findings: 60% ethanol extract exhibits the highest total polyphenols and antioxidant activity compared with water extracts. Bioenergy extraction in MFCs showed that 60% ethanol extracts could give 1.76-fold more power generation compared to the blank. Flavonoids and their sugar-to-glycan ratios increased after CV scanning and they are expected to be effective ES substances. Quercitrin, from the H. cordata extract that shares an ES-like structure, was found to exhibit strong binding affinities towards ACE2 and RdRp. This indicated the potential of H. cordata leaves as a promising antiviral herb.

SELECTION OF CITATIONS
SEARCH DETAIL